Fuzzy Logic Based Approach to Design of Autonomous Landing System for Unmanned Aerial Vehicles
نویسندگان
چکیده
This paper is concerned with autonomous flight of UAVs and proposes a fuzzy logic based autonomous flight and landing system controller. Besides three fuzzy logic controllers which are developed for autonomous navigation for UAVs in a previous work as fuzzy logic based autonomous mission control blocks, three more fuzzy logic modules are developed under the main landing system for the control of the horizontal and the vertical positions of the aircraft against the runway under a TACAN (Tactical Air Navigation) approach. The performance of the fuzzy logic based controllers is evaluated using the standard configuration of MATLAB and the Aerosim Aeronautical Simulation Block Set which provides a complete set of tools for rapid development of 6 degree-of-freedom nonlinear generic manned/unmanned aerial vehicle models. Additionally, FlightGear Flight Simulator and GMS aircraft instruments are deployed in order to get visual outputs that aid the designer in evaluating the performance and the potential of the controllers. The simulated test flights on an Aerosonde indicate the capability of the approach in achieving the desired performance despite the simple design procedure.
منابع مشابه
Autonomous Navigation and Landing Tasks for Fixed Wing Small Unmanned Aerial Vehicles
Autonomous control of UAVs has become a popular research topic in recent years. This paper is concerned with the flight of UAVs (Unmanned Aerial Vehicles) and proposes fuzzy logic based autonomous flight and landing system controllers. Three fuzzy logic modules are developed under the main navigation control system and three more for the autonomous landing control system to control of the altit...
متن کاملVision Based Fuzzy Control Approaches for Unmanned Aerial Vehicles
This paper proposed the use of vision based Fuzzy control approaches for autonomous navigation tasks with Unmanned Aerial Vehicles (UAVs). It is shown the advantages of using RGB cameras as the sensor onboard UAVs and the advantages of using Fuzzy logic controllers. It is explained how to set a vision based system and how to define a Fuzzy controller for a general control approach. A specific s...
متن کاملV-REP & ROS Testbed for Design, Test, and Tuning of a Quadrotor Vision Based Fuzzy Control System for Autonomous Landing
This paper focuses on the use of the Virtual Robotics Experimental Platform (V-REP) and the Robotics Operative System (ROS) working in parallel for design, test, and tuning of a vision based control system to command an Unmanned Aerial Vehicle (UAV). Here, is presented how to configure the V-REP, and ROS to work in parallel, and how to use the developed packages in ROS for the pose estimation b...
متن کاملFuzzy Logic Based Approach to Design of Flight Control and Navigation Tasks for Autonomous Unmanned Aerial Vehicles
This paper proposes a fuzzy logic based autonomous navigation controller for UAVs (unmanned aerial vehicles). Three fuzzy logic modules are developed under the main navigation system for the control of the altitude, the speed, and the heading, through which the global position (latitude–longitude) of the air vehicle is controlled. A SID (Standard Instrument Departure) and TACAN (Tactical Air Na...
متن کاملFuzzy Logic Based Integrated Controller for Unmanned Aerial Vehicles
This paper discusses the integration of health monitoring and flight control systems for small Unmanned Aerial Vehicles (UAVs). After briefly reviewing previous fuzzy logic controllers (FLC) of air vehicles, a very low cost integration method is proposed. The proposed fuzzy logic (FL) selects the best gain values for the operation of PD or PID controllers of the autonomous flight system accordi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 61 شماره
صفحات -
تاریخ انتشار 2011